
MH5 Robot
Release D.1

Alex Sonea

May 30, 2021

GETTING STARTED

1 Design Principles 3

2 Specifications 5
2.1 Dimensions . 5
2.2 Actuators . 5
2.3 Power . 6
2.4 Electronics . 6
2.5 Software . 7
2.6 Future plans . 7

3 mh5_hardware package 9

4 mh5_hardware reference 11
4.1 Main classes . 11
4.2 Supporting classes . 16
4.3 Syncronization Loops . 26
4.4 ros_control Hardware Interface . 32

5 mh5_controllers reference 35
5.1 class ActiveJointController . 35
5.2 class ExtendedJointTrajectoryController . 37
5.3 class CommunicationStatsController . 37

6 mh5_ui reference 39
6.1 Main classes . 39
6.2 Supporting classes . 40
6.3 Views . 43

Index 47

i

ii

MH5 Robot, Release D.1

This is the consolidated documentation for the MH5 Humanoid Robot (Miha).

The section GETTING STARTED will introduce the key Design Principles and the robot Specifications. This is a good
start to have an understanding about the technical capabilities of the robot.

The section HARDWARE includes details about the the standard and customized hardware elements included in the con-
struction of the robot. The information provided relates to:

Table 1: Hardware
Section Purpose
Actuators Information about the actuators used in the robot Information about the configuration

of the actuators A selection of features important for the usage of the robot
Frames Details about the frames used in its construction
Raspberry Pi HAT Details about the Raspberry Pi HAT with more in-depth information about: - the Dy-

namixel Interface - the TFT Display - the Sound Interface - the IMU and - the ADC
used to monitor the voltages

Hot-Swap battery circuits used to manage the power supply from the two batteries in the feet
FSR Feet circuits used to provide: - pressure information - voltage and current information re-

lated to each of the batteries

The section ROS PACKAGES describes the setup of the ROS Noetic version onto the MH5 main controller, including
all dependencies needed for its correct functioning. After this it presents is detail the way the custom MH5 packages
are designed and are supposed to be used. The packages are grouped in several repos to support better control over the
installation (for example the mh5_hardware package is dependent on platform specific drivers and libraries like I2C,
Serial, etc. that might not be available on a desktop platform, while the mh5_monitoring package makes extensive
use of rqt plug-ins that are not installed on the robot by choice, instead being intended to be used on a remote desktop
that has such support enabled):

Table 2: ROS Packages
Section Purpose
mh5_robot Meta-package containing all the packages intended for deployment on the robot: -

Usage of mh5_hardware package - Usage of mh5_controllers package - Usage of
mh5_ui package - Usage of mh5_vision package

mh5_common Meta-package containing all the packages that can be deployed both on the robot
as well as on a remote desktop: - Usage of mh5_description package - Usage of
mh5_msgs package

mh5_remote Meta-package containing all the packages that can be deployed on a remote desktop:
- Usage of mh5_monitor package

Finally the section REFERENCE contains detail API reference for all packages and classes used in the MH5 ROS packages
and is intended to help developers understand in more detail these packages.

GETTING STARTED 1

http://wiki.ros.org/noetic/

MH5 Robot, Release D.1

2 GETTING STARTED

CHAPTER

ONE

DESIGN PRINCIPLES

When designing Miha we have considered the following principles:

1. Affordable: Traditionally, complex humanoid robots are expensive and difficult to afford. Costs tend to grow
exponentially with the size of the robot and, while the costs of electronics follows the same downward trajectory
that applies to other consumer electronic products, the mechanical parts do no not exhibit such a trend. We
therefore have considered a design that offers enough volume to permit high performance computing at the edge
while still minimizing the requirements for the actuators.

2. Complex but not complicated: Toy robots are fun but useless when designing complex ML models or robotics
frameworks. To provide utility, the robots need to have a degree of complexity that will warrant innovative ML
models and robotics frameworks. We believe 22 DoF is a minimum that reflects the need for studying bipedal
locomotion and interaction. A good array of sensors (position, effort, vision, sound, etc.) and processing abilities
need to complement its high-performing actuators.

3. Easily serviceable and expandable: Humanoid robots have a very tough life. Because a lot of the research is
still in infancy, accidents happen and robots break quite often. Many of the platforms available on the market
are not user serviceable which means significant downtime in research until the robots are returned from service.
Miha is designed to be be easily serviced by any user with some minimum technical skills: parts are easily
available and standard (Raspberry Pi, Dynamixel Servos) and frames are 3D printable or available as spares.
Due to the modular nature of the frames, it is also very easy for users to design and 3D print custom parts that
would provide the required functionally for a project at hand.

4. Open and based on standardized framework: We aim to release as much as possible from the design of the
robot as open-source (hardware and software) and we will encourage the community to contribute and expand
this base. We are integrating standard frameworks (ROS, TFLite, etc.) with the robot.

3

MH5 Robot, Release D.1

4 Chapter 1. Design Principles

CHAPTER

TWO

SPECIFICATIONS

Rev D.1 (March 2021)

2.1 Dimensions

Table 1: Dimensions
Parameter Value Comments
Height 48cm
Width 51cm with arms stretched
Depth 20cm
Weight 2.15Kg Including batteries
Weight 1.84Kg Excluding the batteries

2.2 Actuators

Table 2: Actuators
Parameter Value Comments
Total DoF 22
Legs DoF (each) 6 ankle pitch and roll, knee yaw and pitch, hip pitch and

roll
Legs Actuators 6 x 2XL430 each leg contains 3 2XL430-W250
Arms Dof (each) 4 shoulder pitch and roll, elbow yaw and pitch
Arms Actuators 8 x XL430 each arm contains 4 XL430-W250
Head DoF 2 pitch and yaw
Head Actuators 1 x 2XL430 one 2XL430-W250

5

https://emanual.robotis.com/docs/en/dxl/x/2xl430-w250/
https://emanual.robotis.com/docs/en/dxl/x/xl430-w250/
https://emanual.robotis.com/docs/en/dxl/x/2xl430-w250/

MH5 Robot, Release D.1

2.3 Power

Table 3: Power
Parameter Value Comments
Batteries 2 x 2500mAh 3S LiPo batteries, Batteries are located in the feet and are

hot-swap; there is no need to turn off the main controller
to change the batteries

External power 2.5mm power jack 12V Optionally the robot can be powered with a 12V power
adapter using a standard 2.5mm barrel jack

Autonomy 3 hours (preliminary estimates)
Monitoring voltage ADC Dynamixel voltage, 5V railing, 3.3V railing

2.4 Electronics

Table 4: Electronics
Parameter Value Comments
Main controller Raspberry Pi Model 4 4GB RAM
Add on board Robotics HAT The board includes: 1. dual high speed dual Dynamixel

bus 2. IMU (Gyroscope and Accelerometer) 3. 5V 3A
power switch for RPi 4. ADC for monitoring power 5.
stereo codec with mics and 2 x 1W output 6. PWM fan
control 7. USB to UART converter for console access

Hot-swap circuits 2 Each foot includes a circuit that implements: 1. an ideal
diode and allows hot-swap 2. low-voltage alarm 3. emer-
gency shutdown for ultra-low voltage

Display Adafruit 2.0” IPS display A 2.0” 320x 240 IPS TFT display connected on SPI with
console support

Camera 2 Model HBV-1716HD Max resolution 1920 x 1080 USB
connected directly to Raspberry Pi field of view 60 de-
grees

WiFi 2 Built-in 5Ghz frequency WiFi Second USB dongle Low-
latency (5GHz band) Access Point (AP) The second
WiFi can connect to an exiting infrastructure DHCP and
ip routing

Bluetooth Builtin Bluetooth 5.0 BLE Bluetooth keyboard for remote con-
trol and interface navigation

6 Chapter 2. Specifications

MH5 Robot, Release D.1

2.5 Software

Table 5: Software
Parameter Value Comments
OS Raspbian (Debian Buster) Using Linux kernel 5.10 Kernel drivers added for: -

SC16IS762 (SPI to UART) - ST7789V (TFT display)
- WM8960 (sound) - ADS1015 (for voltage monitoring
ADC) - fan_control

Software ROS Noetic ROS Noetic is installed from source
Custom ROS packages The following packages are included: - hardware in-

terface - controllers - UI for robot TFT - URDF with
support for RViz and Gazebo - “director” package for
scripted moves - vision (in progress)

2.6 Future plans

There are a number of exciting upgrades to the platform that we expect to deliver soon:

Table 6: Planed improvements
Area Improvement
Vision Updated cameras with 100 degrees FoV and more fps options
Foot Sensor Soles with 4 force sensing resistors (FSR) Information is exchanged over the Dy-

namixel bus.
Display increase size of display to 2.8 inch to improve readability

2.5. Software 7

MH5 Robot, Release D.1

8 Chapter 2. Specifications

CHAPTER

THREE

MH5_HARDWARE PACKAGE

This package follows the ros_control design model. It contains the highly specific hardware access functions needed
for:

• configuring and communicating with the Dynamixel actuators used by the robot

• configuring and reading information from the on-board IMU unit

• (to-be) configuring and retrieving information from the Force Sensitive Resistors (FSRs) in the feet

class MH5DynamixelInterface : public RobotHW
Main class implementing the protocol required by ros_control for providing access to the robot hardware.

This class performs communication with the servos using Dynamixel protocol and manages the state of these
servos. It uses for this purpose Dynamixel SDK (specifically the ROS implementation of it) with the only excep-
tion that for port communication it uses a custom subclass of PortHandler in order to be able to configure the
communication port with RS485 support, because the interface board used by RH5 robot uses SC16IS762 chips
that control the flow in heardware, but need tto be connfigured in RS485 mode via ioctl.

The class should be instantiated by the pluginlib once the main mode is started and initiates the load of the
CombinedRobotHW class.

The class uses the information from the param server to get details about the communication port configuration
and the attached servos. For each dynamixel interface the following parameters are read:

The class registers itself with the pluginlib by calling:

PLUGINLIB_EXPORT_CLASS(mh5_hardware::MH5DynamixelInterface, hardware_
→˓interface::RobotHW)

9

https://github.com/ROBOTIS-GIT/DynamixelSDK

MH5 Robot, Release D.1

10 Chapter 3. mh5_hardware package

CHAPTER

FOUR

MH5_HARDWARE REFERENCE

4.1 Main classes

4.1.1 class MH5DynamixelInterface

class mh5_hardware::MH5DynamixelInterface : public RobotHW
Main class implementing the protocol required by ros_control for providing access to the robot hardware.

This class performs communication with the servos using Dynamixel protocol and manages the state of these
servos. It uses for this purpose Dynamixel SDK (specifically the ROS implementation of it) with the only excep-
tion that for port communication it uses a custom subclass of PortHandler in order to be able to configure the
communication port with RS485 support, because the interface board used by RH5 robot uses SC16IS762 chips
that control the flow in heardware, but need tto be connfigured in RS485 mode via ioctl.

The class should be instantiated by the pluginlib once the main mode is started and initiates the load of the
CombinedRobotHW class.

The class uses the information from the param server to get details about the communication port configuration
and the attached servos. For each dynamixel interface the following parameters are read:

The class registers itself with the pluginlib by calling:

PLUGINLIB_EXPORT_CLASS(mh5_hardware::MH5DynamixelInterface, hardware_
→˓interface::RobotHW)

Public Functions

MH5DynamixelInterface()
Construct a new MH5DynamixelInterface object. Default constructor to support pluginlib.

~MH5DynamixelInterface()
Destroy the MH5DynamixelInterface object. Provided for pluginlib support.

bool init(ros::NodeHandle &root_nh, ros::NodeHandle &robot_hw_nh)
Initializes the interface.

Will call the protected methods initPort() and initJoints() to perform the initialization of the Dynamixel
port and the configuration of the joints associated with this interface. If either of these fails it will return
false.

Parameters

• root_nh – A NodeHandle in the root of the caller namespace.

11

https://github.com/ROBOTIS-GIT/DynamixelSDK

MH5 Robot, Release D.1

• robot_hw_nh – A NodeHandle in the namespace from which the RobotHW should read
its configuration.

Returns true if initialization was successful

Returns false If the initialization was unsuccessful

void read(const ros::Time &time, const ros::Duration &period)
Performs the read of values for all the servos. This is done through the sync loops objects that have been
prepared in init(). The caller (the main ROS node owning the hardware) would call this method at an
arbitrary frequency that is dictated by it’s processing needs (and can be much higher than the frequency with
with we need to syncronise the data with the actual servos). For this reason each sync loop is responsible
to keep track of it’s own processing frequency and skip executing if requests are too often.

In this particular case this method asks the following loops to run:

• Position, Velocity, Load (pvlReader_)

• Temperature, Voltage (tvReader_)

Parameters

• time – The current time

• period – The time passed since the last call to read

void write(const ros::Time &time, const ros::Duration &period)
Performs the write of position, velocity profile and acceleration profile for all servos that are marked as
present. Assumes the servos have already been configured with velocity profile (see Dyanamixel manual
https://emanual.robotis.com/docs/en/dxl/x/xl430-w250/#what-is-the-profile). Converts the values from
ISO (radians for position, rad / sec for velocity) to Dynamixel internal measures. Uses a Dynamixel
SyncWrite to write the values to all servos with one communication packet.

Parameters

• time – The current time

• period – The time passed since the last call to read

Protected Functions

bool initPort()
Initializes the Dynamixel port.

Returns true if initialization was successfull

Returns false if initialization was unsuccessfull

bool initJoints()
Initializes the joints.

Returns true

Returns false

bool initSensors()
Initializes the sensors.

Returns true

Returns false

12 Chapter 4. mh5_hardware reference

https://emanual.robotis.com/docs/en/dxl/x/xl430-w250/#what-is-the-profile

MH5 Robot, Release D.1

template<class Loop>
Loop *setupLoop(std::string name, const double default_rate)

Convenience function that constructs a loop, reads parameters “rates/<loop_name>” from parameter server
or, if not found, uses a default rate for initialisation. It also calls prepare() and registers it communication
handle (from getCommStatHandle() with the HW communication status inteface)

Template Parameters Loop – the class for the loop

Parameters

• name – the name of the loop

• default_rate – the default rate to use incase no parameter is found in the parameter
server

Returns Loop* the newly created loop object

bool setupDynamixelLoops()
Creates and initializes all the loops used by the HW interface:

• Read: position, velocity, load (pvl_reader)

• Read: temperature, voltage (tv_reader)

• Write: position, velocity (pv_writer)

• Write: torque (t_writer)

Returns true

Protected Attributes

ros::NodeHandle nh_

const char *nss_

std::string port_

int baudrate_

bool rs485_

double protocol_

mh5_port_handler::PortHandlerMH5 *portHandler_

dynamixel::PacketHandler *packetHandler_

mh5_hardware::PVLReader *pvlReader_
Sync Loop for reading the position, velocity and load.

mh5_hardware::TVReader *tvReader_
Sync Loop for reading the temperature and voltage.

mh5_hardware::PVWriter *pvWriter_
SyncLoop for writing the position and velocity.

mh5_hardware::TWriter *tWriter_
SyncLoop for writing the torque status command.

4.1. Main classes 13

MH5 Robot, Release D.1

hardware_interface::JointStateInterface joint_state_interface

hardware_interface::PosVelJointInterface pos_vel_joint_interface

mh5_hardware::ActiveJointInterface active_joint_interface

mh5_hardware::CommunicationStatsInterface communication_stats_interface

mh5_hardware::TempVoltInterface joint_temp_volt_interface

mh5_hardware::VoltCurrInterface sensor_volt_curr_interface

int num_joints_

std::vector<Joint*> joints_

int num_sensors_

std::vector<FootSensor*> foot_sensors_

4.1.2 class MH5I2CInterface

class mh5_hardware::MH5I2CInterface : public RobotHW
Main class implementing the protocol required by ros_control for providing access to the robot hardware
connected on an I2C bus.

This class performs communication with the devices using ioctl.

The class should be instantiated by the pluginlib once the main mode is started and initiates the load of the
CombinedRobotHW class.

The class uses the information from the param server to get details about the communication port configuration
and the attached devices. For each device interface the following parameters are read:

. . .

The class registers itself with the pluginlib by calling:

PLUGINLIB_EXPORT_CLASS(mh5_hardware::MH5I2CInterface, hardware_interface::RobotHW)

Public Functions

MH5I2CInterface()
Construct a new MH5I2CInterface object. Default constructor to support pluginlib.

~MH5I2CInterface()
Destroy the MH5I2CInterface object. Provided for pluginlib support.

bool init(ros::NodeHandle &root_nh, ros::NodeHandle &robot_hw_nh)
Initializes the interface.

Will open the system port port and the configuration of the devices associated with this interface. If either
of these fails it will return false.

Parameters

• root_nh – A NodeHandle in the root of the caller namespace.

• robot_hw_nh – A NodeHandle in the namespace from which the RobotHW should read
its configuration.

14 Chapter 4. mh5_hardware reference

MH5 Robot, Release D.1

Returns true if initialization was successful

Returns false If the initialization was unsuccessful

void read(const ros::Time &time, const ros::Duration &period)
Performs the read of values for all the devices. Devices might have specific frequency preferences and
would compare the time / period provided with their own to decide if they indeed need to do anything.

Parameters

• time – The current time

• period – The time passed since the last call to read

void write(const ros::Time &time, const ros::Duration &period)
Performs the write of values for all the devices. Devices might have specific frequency preferences and
would compare the time / period provided with their own to decide if they indeed need to do anything.

Parameters

• time – The current time

• period – The time passed since the last call to read

Protected Functions

double calcLPF(double old_val, double new_val, double factor)

Protected Attributes

ros::NodeHandle nh_

const char *nss_

std::string port_name_

int port_

LSM6DS3 *imu_
IMU object.

double ang_vel_[3] = {0.0, 0.0, 0.0}
Stores the read velocities from the IMU converted to rad/s.

double lin_acc_[3] = {0.0, 0.0, 0.0}
Stores the read accelerations from the IMU converted in m/s^2.

double imu_lpf_ = 0.1
Low-pass filter factor for IMU.

double imu_loop_rate_
Keeps the desired execution rate (in Hz) the for IMU.

ros::Time imu_last_execution_time_
Stores the last time the IMU read was executed.

std::vector<double> imu_orientation_ = {0.0, 0.0, 0.0, 1.0}

4.1. Main classes 15

MH5 Robot, Release D.1

hardware_interface::ImuSensorHandle imu_h_

hardware_interface::ImuSensorInterface imu_sensor_interface_

4.2 Supporting classes

4.2.1 class MH5PortHandler

class mh5_port_handler::PortHandlerMH5 : public PARENT

Public Functions

inline PortHandlerMH5(const char *port_name)

inline bool setRS485()

4.2.2 class DynamixelDevice

class mh5_hardware::DynamixelDevice
Represents a generic Dyanmixel device.

Subclassed by FootSensor, Joint

Public Functions

inline DynamixelDevice()
Default constructor.

virtual void fromParam(ros::NodeHandle &hw_nh, std::string &name, mh5_port_handler::PortHandlerMH5
*port, dynamixel::PacketHandler *ph)

Uses information from the paramter server to initialize the Device.

It will look for the following paramters in the server, under the device name:

• id: the Dynamixel ID of the device; if missing the device will be marked as not present (ex. present_
= false) and this will exclude it from all communication

Parameters

• hw_nh – node handle to the hardware interface

• name – name given to this device

• port – Dynamixel port used for communication; should have been checked and opened
prior by the HW interface

• ph – Dynamixel port handler for communication; should have been checked and initialized
priod by the HW interface

16 Chapter 4. mh5_hardware reference

MH5 Robot, Release D.1

inline uint8_t id()
Returns the Dynamixel ID of the device.

Returns uint8_t the ID of the device.

inline std::string name()
Returns the name of the device.

Returns std::string the name of the device.

inline bool present()
Returns if the device is present (all settings are ok and communication with it was successfull).

Returns true if the device is physically present

Returns false if the device could not be detected

inline void setPresent(bool state)
Updates the present flag of the device.

Parameters state – the desired state (true == present, false = not present)

bool ping(const int num_tries)
Performs a Dynamixel ping to the device. It will try up to num_tries times in case there is no answer or
there are communication errors.

Parameters num_tries – how many tries to make if there are no answers

Returns true if the device has responded

Returns false if the device failed to respond after num_tries times

virtual void initRegisters() = 0
Hard-codes the initialization of the device. Subclasses must override the method.

bool writeRegister(const uint16_t address, const int size, const long value, const int num_tries)
Convenience method for writing a register to the device. Depending on the size parameter it will call
write1ByteTxRx(), write2ByteTxRx() or write4ByteTxRx().

Parameters

• address – the address of the register to write to

• size – the size of the register to write to

• value – a value to write; it will be type casted to uint8_t, uint16_t or unit32_t depending
on the size parameter

• num_tries – number of times to try in case there are errors

Returns true if the write was sucessful

Returns false if there was a communication or hardware error

bool readRegister(const uint16_t address, const int size, long &value, const int num_tries)
Convenience method for reading a register from the device. Depending on the size parameter it will call
read1ByteTxRx(), read2ByteTxRx() or read4ByteTxRx().

Parameters

• address – the address of the register to read from

• size – the size of the register to read

• value – a value to store the read result; it will be type casted to uint8_t, uint16_t or unit32_t
depending on the size parameter

4.2. Supporting classes 17

MH5 Robot, Release D.1

• num_tries – number of times to try in case there are errors

Returns true if the read was sucessful

Returns false if there was a communication or hardware error

bool reboot(const int num_tries)
Reboots the device by invoking the REBOOT Dynamixel instruction.

Parameters num_tries – how many tries to make if there are no answers

Returns true if the reboot was successful

Returns false if there were communication of harware errors

inline bool shouldReboot()
Indicates if there was a command to reboot the device that was not yet completed. It simply returns the
reboot_command_flag_ member that should be set whenever a controllers wants to reboot the device.

Returns true there is a reset that was not syncronised to hardware

Returns false there is no change in the status

inline void resetRebootCommandFlag()
Resets to false the reboot_command_flag_. Normally used by the sync loops after successful processing of
an update.

Protected Attributes

std::string name_
The name of the device.

mh5_port_handler::PortHandlerMH5 *port_
The communication port to be used.

dynamixel::PacketHandler *ph_
Dynamixel packet handler to be used.

ros::NodeHandle nh_
The node handler of the owner (hardware interface)

const char *nss_
Name of the owner as a c_str() - for easy printing of messages.

uint8_t id_
Device ID.

bool present_
Device is present (true) or not (false)

bool reboot_command_flag_
Controller requested a reboot and is not yet syncronised.

18 Chapter 4. mh5_hardware reference

MH5 Robot, Release D.1

4.2.3 class Joint

class mh5_hardware::Joint : public DynamixelDevice
Represents a Dynamixel servo with the registers and communication methods.

Also has convenience methods for creating HW interfaces for access by controllers.

Public Functions

inline Joint()
Default constructor.

virtual void fromParam(ros::NodeHandle &hw_nh, std::string &name, mh5_port_handler::PortHandlerMH5
*port, dynamixel::PacketHandler *ph) override

Uses information from the paramter server to initialize the Joint.

It will look for the following paramters in the server, under the joint name:

• id: the Dynamixel ID of the servo; if missing the joint will be marked as not prosent (ex. present_ =
false) and this will exclude it from all communication

• inverse: indicates that the joint has position values specified CW (default) are CCW see https://
emanual.robotis.com/docs/en/dxl/x/xl430-w250/#drive-mode10 bit 0. If not present the default is
false

• offset: a value [in radians] that will be added to converted raw position from the hardware register
to report present position of servos in radians. Conversely it will be substracted from the desired
command position before converting to the raw position value to be stored in the servo.

Initializes the jointStateHandle_, jointPosVelHandle_ and jointActiveHandle_ attributes.

Parameters

• hw_nh – node handle to the harware interface

• name – name given to this joint

• port – Dynamixel port used for communication; should have been checked and opened
prior by the HW interface

• ph – Dynamixel port handler for communication; should have been checked and initialized
priod by the HW interface

virtual void initRegisters() override
Hard-codes the initialization of the following registers in the joint (see https://emanual.robotis.com/docs/
en/dxl/x/xl430-w250/#control-table).

The registers are initialized as follows:

4.2. Supporting classes 19

https://emanual.robotis.com/docs/en/dxl/x/xl430-w250/#drive-mode10
https://emanual.robotis.com/docs/en/dxl/x/xl430-w250/#drive-mode10
https://emanual.robotis.com/docs/en/dxl/x/xl430-w250/#control-table
https://emanual.robotis.com/docs/en/dxl/x/xl430-w250/#control-table

MH5 Robot, Release D.1

Register Address Value Comments
return delay 9 0 0 us delay time
drive mode 10 4 if no “inverse” mode set
drive mode 10 5 if “inverse” mode set
operating mode 11 3 position control mode
temperature limit 31 75 75 degrees Celsius
max voltage 32 135 13.5 V
velocity limit 44 1023 max velocity
max position 48 4095 max value
min position 52 0 min value

Other registers might be added in the future.

bool isActive(bool refresh = false)
Returns if the joint is active (torque on).

Parameters refresh – if this parameter is true it will force a re-read of the register 64 from the
servo otherwise it will report the cached value

Returns true the torque is active

Returns false the torque is inactive

bool torqueOn()
Sets torque on for the joint. Forces writing 1 in the register 64 of the servo.

Returns true if the activation was successfull

Returns false if there was an error (communication or hardware)

bool torqueOff()
Sets torque off for the joint. Forces writing 0 in the register 64 of the servo.

Returns true if the deactivation was successfull

Returns false if there was an error (communication or hardware)

inline bool shouldToggleTorque()
Indicates if there was a command to change the torque that was not yet completed. It simply returns the
active_command_flag_ member that should be set whenever a controllers wants to switch the torque status
and sets the active_command_.

Returns true there is a command that was not syncronised to hardware

Returns false there is no change in the status

inline void resetActiveCommandFlag()
Resets to false the active_command_flag_. Normally used by the sync loops after successful processing of
an update.

bool toggleTorque()
Changes the torque by writing into register 64 in the hardware using the active_command_ value. If the
change is successfull it will reset the active_command_flag_.

Returns true successful change

Returns false communication or harware error

inline uint8_t getRawTorqueActiveFromCommand()
Produces an internal format for torque status based on a desired command.

Returns uint8_t value suitable for writing to the hardware for the desired torque status.

20 Chapter 4. mh5_hardware reference

MH5 Robot, Release D.1

inline void setPositionFromRaw(int32_t raw_pos)
Set the position_state_ (represented in radians) from a raw_pos that represents the value read from the
hardware. It takes into account the servo’s charactistics, and the offset with the formula:

position_state_ = (raw_pos - 2047) * 0.001533980787886 + offset_

Parameters raw_pos – a raw position as read from the hardware; this will already contain the
“inverse” classification.

inline void setVelocityFromRaw(int32_t raw_vel)
Set the velocity_state_ (represented in radians/sec) from a raw_vel that represents the value read from the
hardware. It takes into account the servo’s charactistics with the formula:

velocity_state_ = raw_vel * 0.023980823922402

Parameters raw_vel – a raw velocity as read from the hardware; this will already contain the
“inverse” classification and is also signed

inline void setEffortFromRaw(int32_t raw_eff)
Set the effort_state_ (represented in Nm) from a raw_eff that represents the value read from the hardware.
It takes into account the servo’s charactistics with the formula:

effort_state_ = raw_eff * 0.0014

Parameters raw_eff – a raw effort as read from the hardware; this will already contain the
“inverse” classification and is also signed

inline void setVoltageFromRaw(int16_t raw_volt)
Set the voltage_state_ (represented in V) from a raw_volt that represents the value read from the hardware.
The method simply divides with 10 and converts to double.

Parameters raw_volt – the value of voltage as read in hardware

inline void setTemperatureFromRaw(int8_t raw_temp)
Set the temperature_state_ (represented in degrees Celsius) from a raw_temp that represents the value read
from the hardware. The method simply converts to double.

Parameters raw_temp –

inline int32_t getRawPositionFromCommand()
Produces an internal format for position based on a desired command position (expressed in radians) using
the formula:

result = (position_command_ - offset_) / 0.001533980787886 + 2047

Returns int32_t a value suitable for writing to the hardware for the desired position in posi-
tion_command_ expressed in radians.

inline uint32_t getVelocityProfileFromCommand()
The velocity_command_ indicates the desired velocity (in rad/s) for the execution of the position com-
mands. Since we configure the servo in time profile mode, the command is translated into a desired duration
for the execution of the position command, that is after that stored into register 112. For this the method
calculates the delta between the desired position and the current position divided by the desired velocity,
obtaining thus the desired duration for the move. The number is then multiplied with 1000 as the harware
expect the duration in ms. The full formula for the value is:

result = abs((position_command_ - position_state_) / velocity_command_) * 1000

Returns uint32_t a value suitable for writing to the hardware profile velocity for the desired
position in velocity_command_ expressed in radians/s.

inline const hardware_interface::JointStateHandle &getJointStateHandle()
Returns the handle to the joint position interface object for this joint.

4.2. Supporting classes 21

MH5 Robot, Release D.1

Returns const hardware_interface::JointStateHandle&

inline const hardware_interface::PosVelJointHandle &getJointPosVelHandle()
Returns the handle to the joint position / velocity command interface object for this joint.

Returns const hardware_interface::PosVelJointHandle&

inline const mh5_hardware::JointTorqueAndReboot &getJointActiveHandle()
Returns the handle to the joint activation command interface object for this joint.

Returns const mh5_hardware::JointTorqueAndReboot&

inline const mh5_hardware::TempVoltHandle &getTempVoltHandle()

Protected Attributes

bool inverse_
Servo uses inverse rotation.

double offset_
Offest for servo from 0 position (center) in radians.

double position_state_
Current position in radians.

double velocity_state_
Current velocity in radians/s.

double effort_state_
Current effort in Nm.

double active_state_
Current torque state [0.0 or 1.0].

double voltage_state_
Current voltage [V].

double temperature_state_
Current temperature deg C.

double position_command_
Desired position in radians.

double velocity_command_
Desired velocity in radians/s.

bool poistion_command_flag_
Indicates that the controller has updated the desired poistion / velocity and is not yet syncronised.

double active_command_
Desired torque state [0.0 or 1.0].

22 Chapter 4. mh5_hardware reference

MH5 Robot, Release D.1

bool active_command_flag_
Indicates that the controller has updated the desired torque state and is not yet syncronised.

hardware_interface::JointStateHandle jointStateHandle_
A handle that provides access to position, velocity and effort.

hardware_interface::PosVelJointHandle jointPosVelHandle_
A handle that provides access to desired position and desired velocity.

mh5_hardware::JointTorqueAndReboot jointActiveHandle_
A handle that provides access to desired torque state.

mh5_hardware::TempVoltHandle jointTempVoltHandle_

4.2.4 class FootSensor

class mh5_hardware::FootSensor : public DynamixelDevice
Represents a Dynamixel Foot sensor.

Also has convenience methods for creating HW interfaces for access by controllers.

Public Functions

inline FootSensor()
Default constructor.

virtual void fromParam(ros::NodeHandle &hw_nh, std::string &name, mh5_port_handler::PortHandlerMH5
*port, dynamixel::PacketHandler *ph) override

Uses information from the paramter server to initialize the Device.

It will look for the following paramters in the server, under the device name:

• id: the Dynamixel ID of the device; if missing the device will be marked as not present (ex. present_
= false) and this will exclude it from all communication

Parameters

• hw_nh – node handle to the hardware interface

• name – name given to this device

• port – Dynamixel port used for communication; should have been checked and opened
prior by the HW interface

• ph – Dynamixel port handler for communication; should have been checked and initialized
priod by the HW interface

virtual void initRegisters() override
Hard-codes the initialization of the registers in the foot (see <link to=”” the=”” documentation>=””>).

The registers are initialized as follows:

Register | Address | Value | Comments ————– | —- | – | ———————-

4.2. Supporting classes 23

MH5 Robot, Release D.1

Other registers might be added in the future.

inline bool readRawSensors()

inline bool readLPFSensors()

inline bool readCalibratedSensors()

bool readCalibrationFactors()

bool updateCalibrationFactors()

bool readPower()

inline const mh5_hardware::VoltCurrHandle &getVoltCurrHandle()

Protected Functions

bool read4Sensors(u_int16_t address, FootReading &readings)

Protected Attributes

FootReading foot_readings_
Returns the handle to the joint position interface object for this joint.

Returns const hardware_interface::JointStateHandle& Returns the handle to the joint position /
velocity command interface object for this joint

Returns const hardware_interface::PosVelJointHandle& Returns the handle to the joint activa-
tion command interface object for this joint

Returns const mh5_hardware::JointTorqueAndReboot&

FootReading raw_readings_

FootReading lpf_readings_

CalibrationFactors calibration_factors_

double voltage_

double current_

mh5_hardware::VoltCurrHandle volt_curr_handle_

24 Chapter 4. mh5_hardware reference

MH5 Robot, Release D.1

4.2.5 class LSM6DS3

class LSM6DS3 : public LSM6DS3Core

Public Functions

LSM6DS3(int port, uint8_t address)

~LSM6DS3() = default

status_t initialize(SensorSettings *pSettingsYouWanted = NULL)

int16_t readRawAccelX(void)

int16_t readRawAccelY(void)

int16_t readRawAccelZ(void)

int16_t readRawGyroX(void)

int16_t readRawGyroY(void)

int16_t readRawGyroZ(void)

double readFloatAccelX(void)

double readFloatAccelY(void)

double readFloatAccelZ(void)

double readFloatGyroX(void)

double readFloatGyroY(void)

double readFloatGyroZ(void)

int16_t readRawTemp(void)

float readTempC(void)

float readTempF(void)

4.2. Supporting classes 25

MH5 Robot, Release D.1

void fifoBegin(void)

void fifoClear(void)

int16_t fifoRead(void)

uint16_t fifoGetStatus(void)

void fifoEnd(void)

double calcGyro(int16_t)

double calcAccel(int16_t)

Public Members

SensorSettings settings

uint16_t allOnesCounter

uint16_t nonSuccessCounter

4.3 Syncronization Loops

4.3.1 class LoopWithCommunicationStats

class mh5_hardware::LoopWithCommunicationStats
Class that wrapps around a Dynaxmiel GroupSync process and can be executed with a given frequency. It
also keeps tabs on the communication statistics: total (since the start of the node) number of Dynamixel packs
executed, total number of errors encountered, as well as a shorter timeframe count of packets and errors that can
be reset and can be used to report “recent” statistics.

The class can produce a CommunicationStatsHandle for the registering with a controller that can publish these
statistics.

Subclassed by GroupSyncRead, GroupSyncWrite

Public Functions

inline LoopWithCommunicationStats(const std::string &name, double loop_rate)
Construct a new Communication Stats object.

Initializes the communication statistics to 0 and the last_execution_time_ to the current time.

Parameters

• name – will be the name used for the loop when registering with the resource manager

26 Chapter 4. mh5_hardware reference

MH5 Robot, Release D.1

• loop_rate – the rate (in Hz) that the loop should execute. The Execute() method checks
if enough time has passed since last run, otherwise it will not be executed. This permits
the loop to be configured to run on a much lower rate than the owner loop.

inline ~LoopWithCommunicationStats()
Destroy the Communication Stats object.

inline const std::string getName()
Returns the name of the loop. Used for message genration.

Returns const std::string the name of the loop.

inline void resetStats()
Resets the recent statistics. Only the packets_ and errors_ are reset to 0, the total_packets_ and total_errors_
(that keep the cummulative packets since the start of the node) are not affected.

inline void resetAllStats()
Resets all statistics, including the totals.

inline const CommunicationStatsHandle &getCommStatHandle()
Returns a ros_control resource Handle to the communication statistics. Intendent to be called by the
main hardware interface in order to register the loop statistics as a resource with a controller that will
publish this statistics.

Returns const CommunicationStatsHandle& a ros_control resource handle

virtual bool prepare(std::vector<Joint*> joints) = 0
Prepare the loop (if necessary) based on the specifics of the loop and the joint information. This should
be called only once by the owner of the loop, imidiately after the constructor. The method needs to be
implemented in the subclass to perform (or just return a true) whatever is needed for that type of loop.

Parameters joints – an array of joints that might be needed in the preparation step

Returns true if the activity was successful

Returns false if there was an error performing the activity

virtual bool beforeCommunication(std::vector<Joint*> joints) = 0
This is an activity that needs to be performed each time in the loop just before the communication. This
allows the particular implementation of the loop to do activities required before the actual communication.

Parameters joints – an array of joints that might be needed in this step

Returns true if the activity was successful

Returns false if there was an error performing the activity

inline bool Execute(const ros::Time &time, const ros::Duration &period, std::vector<Joint*> joints)
Wraps the actual communication steps so that it takes into account the requested processing rate and keeps
track of the communication statistics. If the call to Execute() is too early (no enough time has passed since
last run to account for the execution rate) the method will simply return true.

If enough time has passed, the method checks first if there was a request to reset the statistics then it will call
resetStats(). It will then call: beforeCommunication() and if this is not successfule it will stop and return
false. If the step above is successful it will increment the packets statistics and then call Communicate() and
check again the result. If this is not successfull it will increment the number of errors and return false. If the
communication was successfull it will call afterCommunication() and return the result of that processing.

Parameters

• time – time to execute the method (typically close to now)

• period – the time passed since the last call to this method

4.3. Syncronization Loops 27

MH5 Robot, Release D.1

• joints – an array of joints that need to be processed

Returns true if the processing (including the call to Communicate()) was successfull

Returns false the call to Communicate() was unsuccessfull

virtual bool Communicate() = 0
Virtual method that needs to be impplemented by the subclasses depending on the actual work the loop is
doing (reading or writing).

Returns true the communication was successfull

Returns false the communication was not successfull

virtual bool afterCommunication(std::vector<Joint*> joints) = 0
This is an activity that needs to be performed each time in the loop just after the communication. This
allows the particular implementation of the loop to do activities required after the actual communication
(ex. for an read loop to retrieve the data from the response package and store it in the joints attributes).

Parameters joints – an array of joints that might be needed in this step

Returns true if the activity was successful

Returns false if there was an error performing the activity

Protected Functions

inline void incPackets()
Convenience method to increment the number of packets and total packets.

inline void incErrors()
Convenience method to increment the number of errors and total total.

Protected Attributes

double loop_rate_
Keeps the desired execution rate (in Hz) the for loop.

ros::Time last_execution_time_
Stores the last time the loop was executed.

long packets_
Number of packets transmited since last reset.

long errors_
Number of errors encountered since last reset.

long tot_packets_
Total number of packets transmitted since the start of node.

long tot_errors_
Total number of errors encountered since the start of node.

bool reset_
Keeps asyncronously the requests (from the controllers) to reset the statistics. The Execute() method will
check this and if set to true it will reset the statistics.

28 Chapter 4. mh5_hardware reference

MH5 Robot, Release D.1

const CommunicationStatsHandle comm_stats_handle_
A ros_control resource type handle for passing to the resource manager and to be used by the controller
that publishes the statistics.

4.3.2 class GroupSyncRead

class mh5_hardware::GroupSyncRead : public GroupSyncRead, public LoopWithCommunicationStats
A specialization of the loop using a Dynamixel GroupSyncRead. Intended for reading data from a group of
dynamixels.

This specialization needs a start address and a data length that the loop will handle, implements the prepare()
method that calls addParam() for all IDs of joints that are marked as “present” and provides a specific implemen-
tation of the Communicate() method.

Subclassed by PVLReader, TVReader

Public Functions

inline GroupSyncRead(const std::string &name, double loop_rate, dynamixel::PortHandler *port,
dynamixel::PacketHandler *ph, uint16_t start_address, uint16_t data_length)

Construct a new GroupSyncRead object which is an extension on a standard dynamixel GroupSyncRead.

Parameters

• name – the name of the loop; used for messages and for registering resources

• loop_rate – the rate the loop will be expected to run

• port – the dynamixel::PortHandler needed for the communication

• ph – the dynamixel::PacketHandler needed for communication

• start_address – the start addres for reading the data for all servos

• data_length – the length of the data to be read

virtual bool prepare(std::vector<Joint*> joints) override
Adds all the joints that are marked “present” to the processing loop by invoking the addParam() methods
of the dynamixel::GroupSyncRead. If there are errors there will be a warning printed.

Parameters joints – a vector of joints to used in the loop

Returns true if at least one joint has been added to the loop

Returns false if no joints has been suucessfully added to the loop

inline virtual bool beforeCommunication(std::vector<Joint*> joints) override
Simply returns true. SyncReads do not need any additional preparation before the communication.

Parameters joints – an array of joints that might be needed in this step

Returns true always

virtual bool Communicate() override
Particular implementation of the communication, specific to the GroupSyncRead. Calls txrxPacket() of
dynamixel::GroupSyncRead and checks the communication result.

Returns true if the communication was successful

Returns false if there was a communication error

4.3. Syncronization Loops 29

MH5 Robot, Release D.1

4.3.3 class GroupSyncWrite

class mh5_hardware::GroupSyncWrite : public GroupSyncWrite, public LoopWithCommunicationStats
A specialization of the loop using a Dynamixel GroupSyncWrite. Intended for writing data to a group of dy-
namixels.

This specialization needs a start address and a data length that the loop will handle, implements the beforeEx-
ecute() method that calls addParam() for all IDs of joints that are marked as “present” and provides a specific
implementation of the Communicate() method.

Subclassed by PVWriter, TWriter

Public Functions

inline GroupSyncWrite(const std::string &name, double loop_rate, dynamixel::PortHandler *port,
dynamixel::PacketHandler *ph, uint16_t start_address, uint16_t data_length)

inline virtual bool prepare(std::vector<Joint*> joints)
Simply returns true. SyncWrites need to pre-prepare data foar each execution and this is implemented in
beforeExecute().

Parameters joints – an array of joints that might be needed in this step

Returns true always

inline virtual bool afterCommunication(std::vector<Joint*> joints)
Simply returns true. SyncWrites do not need any activities after communication.

Parameters joints – an array of joints that might be needed in this step

Returns true always

virtual bool Communicate() override
Particular implementation of the communication, specific to the GroupSyncWrite. Calls txPacket() of dy-
namixel::GroupSyncWrite and checks the communication result.

Returns true if the communication was successful

Returns false if there was a communication error

4.3.4 class PVLReader

class mh5_hardware::PVLReader : public GroupSyncRead
Specialization of the GroupSyncRead to perform the read of the following registers for XL430 Dynamixel series:
present position, present velocity, present load (hence the name PVL).

30 Chapter 4. mh5_hardware reference

MH5 Robot, Release D.1

Public Functions

inline PVLReader(const std::string &name, double loop_rate, dynamixel::PortHandler *port,
dynamixel::PacketHandler *ph)

Construct a new PVLReader object. Uses 126 as the start of the address and 10 as the data_lenght.

Parameters

• name – the name of the loop; used for messages and for registering resources

• loop_rate – the rate the loop will be expected to run

• port – the dynamixel::PortHandler needed for the communication

• ph – the dynamixel::PacketHandler needed for communication

virtual bool afterCommunication(std::vector<Joint*> joints) override
Postprocessing of data after communication, specific to the position, velocity and load registers. Unpacks
the data from the returned response and calls the joints’ setPositionFromRaw(), setVelocityFromRaw(),
setEffortFromRaw() to update them. If there are errors there will be ROS_DEBUG messages issued but
the processing will not be stopped.

Parameters joints –

Returns true

Returns false

4.3.5 class PVWriter

class mh5_hardware::PVWriter : public GroupSyncWrite
Specialization of the GroupSyncWrite to perform the write of the following registers for XL430 Dynamixel series:
goal position, goal velocity (profile), (hence the name PVWriter). The Joint object handles the conversion of
commands (position, velocity) into (position, velocity profile) needed to control dynamixel XL430s in velocity
profile mode.

Public Functions

inline PVWriter(const std::string &name, double loop_rate, dynamixel::PortHandler *port,
dynamixel::PacketHandler *ph)

Initializes the writer object with start address 108 and 12 bytes of information to be written (4 for position,
4 for velocity profile and 4 for acceleration profile)

Parameters

• name – the name of the loop

• loop_rate – the rate to be executed

• port – the Dynamixel port handle to be used for communication

• ph – the Dynamixel protocol handle to be used for communication

virtual bool beforeCommunication(std::vector<Joint*> joints) override
For each joint retrieves the desired position and velocity profile (determined internally by the Joint class
from the velocity command) and prepares a data buffer with the 12 bytes needed to update the goal position
(reg 116), velocity profile (reg. 112) and acceleration profile (reg. 108). Acceleration profile is hard-coded
to 1/4 of the velocity profile. Only joints that are “present” are taken into account.

Parameters joints – vector of joints for processing

4.3. Syncronization Loops 31

MH5 Robot, Release D.1

Returns true if there is at least one joint that has been added to the loop

Returns false if no joints were added to the loop

4.4 ros_control Hardware Interface

4.4.1 class JointHandleWithFlag

class mh5_hardware::JointHandleWithFlag : public JointHandle
Extends the hardware_interface::JointHandle with a boolean flag that indicates when a new command was posted.
This helps the HW interface decide if that value needs to be replicated to the servos or not.

Subclassed by JointTorqueAndReboot

Public Functions

JointHandleWithFlag() = default

inline JointHandleWithFlag(const JointStateHandle &js, double *cmd, bool *cmd_flag)
Construct a new JointHandleWithFlag object by extending the hardware_interface::JointHandle with an
additional boolean flag that indicates a new command has been issued.

Parameters

• js – the JointStateHandle that is commanded

• cmd – pointer to the command attribute in the HW interface

• cmd_flag – pointed to the bool flag in the HW interface that is used to indicate that the
value was changed and therefore needs to be synchronized by the HW.

inline void setCommand(double command)
Overrides the hardware_interface::JointHandle setCommand() method by setting the flag in the HW to true
to indicate that a new value was storred and therefore it needs to be synchronised after calling the inherited
method.

Parameters command – the command set to the joint

Private Members

bool *cmd_flag_ = {nullptr}
Keeps the pointed to the flag in the HW that indicates when value change.

class mh5_hardware::JointTorqueAndReboot : public JointHandleWithFlag

32 Chapter 4. mh5_hardware reference

MH5 Robot, Release D.1

Public Functions

JointTorqueAndReboot() = default

inline JointTorqueAndReboot(const JointStateHandle &js, double *torque, bool *torque_flag, bool
*reboot_flag)

inline void setReboot(bool reboot)

inline bool getReboot()

Private Members

bool *reboot_flag_ = {nullptr}

4.4.2 class ActiveJointInterface

class ActiveJointInterface : public hardware_interface::HardwareResourceManager<JointTorqueAndReboot>
Joint that supports activation / deactivation.

To keep track of updates to the HW resource we use and additional flag that is set to true when a new command
is issued to the servo. The communication loops will use this flag to determine which servos really need to be
syncronised and will reset it once the synchronisation is finished.

4.4.3 class CommunicationStatsHandle

class mh5_hardware::CommunicationStatsHandle

Public Functions

CommunicationStatsHandle() = default

inline CommunicationStatsHandle(const std::string &name, const long *packets, const long *errors, const
long *tot_packets, const long *tot_errors, bool *reset)

inline std::string getName() const

inline long getPackets() const

inline long getErrors() const

inline long getTotPackets() const

4.4. ros_control Hardware Interface 33

MH5 Robot, Release D.1

inline long getTotErrors() const

inline const long *getPacketsPtr() const

inline const long *getErrorsPtr() const

inline const long *getTotPacketsPtr() const

inline const long *getTotErrorsPtr() const

inline void setReset(bool reset)

Private Members

std::string name_

const long *packets_ = {nullptr}

const long *errors_ = {nullptr}

const long *tot_packets_ = {nullptr}

const long *tot_errors_ = {nullptr}

bool *reset_ = {nullptr}

4.4.4 class CommunicationStatsInterface

class CommunicationStatsInterface : public
hardware_interface::HardwareResourceManager<CommunicationStatsHandle>

34 Chapter 4. mh5_hardware reference

CHAPTER

FIVE

MH5_CONTROLLERS REFERENCE

5.1 class ActiveJointController

class mh5_controllers::ActiveJointController : public
controller_interface::Controller<mh5_hardware::ActiveJointInterface>

Controller that can swithc on or off the torque on a group of Dynamixel servos.

Requires mh5_harware::ActiveJointInterfaces to be registered with the hardware interface. Reads “groups” pa-
rameter from the param server, which should contain a list of groups that can be toggled in the same time. It is
possible to nest groups in each other as long as they build on each other.

Advertises a service /torque_control/switch_torque of type mh5_controllers/ActivateJoint. The
name passed in calls to this service can be individual joints or groups of joints.

rosservice call /torque_control/switch_torque "{name: "head_p", state: true}"

of for a group:

rosservice call /torque_control/switch_torque "{name: "head", state: true}"

Will simply turn on or off the torque on all the servos associated with the group.

Public Functions

inline ActiveJointController()
Construct a new Active Joint Controller object using a mh5_hardware::ActiveJointInterface interface.

inline ~ActiveJointController()
Destroy the Active Joint Controller object. Shuts also down the ROS service.

bool init(mh5_hardware::ActiveJointInterface *hw, ros::NodeHandle &n)
Initializes the controller by reading the joint list from the parameter server under “groups”. If no parameter
is provided it will create a group “all” and assign all avaialable resources to this group. If groups are defined
then they should be first listed in the “groups” parameter, then each one of them should be listed separately
with the joints, or subgroups that are included. If subgroups are used they have to be fully defined first,
befire they are used in a superior group.

This function also advertises the ROS service: /[controller name]/switch_torque

Parameters

• hw – the hardware interface that will provide the access to the repoces

• n – the nodehandle of the initiator controller

35

MH5 Robot, Release D.1

Returns true if there is at least one joint that has been successfully identified and registered with
this controller

Returns false if either no “joints” parameter was available in the param server or no joints has
been successfully retrieved from the hardware interface.

inline void starting(const ros::Time &time)
Does nothing in this case. Used for completing the controller interface.

Parameters time –

void update(const ros::Time&, const ros::Duration&)
Does the actual update of the joints’ torque activation member. Please note that this controller only sets the
field as provided by the mh5_hardware::ActiveJointInterface and it is not actually triggering any commu-
nication with the actual servos. It is the hardware interface respoonsibility to replicate this requests to the
device.

Private Functions

bool torqueCB(mh5_msgs::ActivateJoint::Request &req, mh5_msgs::ActivateJoint::Response &res)
Callback for processing “switch_torque” calls. Checks if the requested group exists or if there is a joint by
that name.

Parameters

• req – the service request; group/joint name + desired state

• res – the service response; if things are successful + detailed message

Returns true always

bool rebootCB(mh5_msgs::ActivateJoint::Request &req, mh5_msgs::ActivateJoint::Response &res)
Callback for processing “reboot” calls. Checks if the requested group exists or if there is a joint by that
name.

Parameters

• req – the service request; group/joint name + desired state

• res – the service response; if things are successful + detailed message

Returns true always

Private Members

std::map<std::string, std::vector<mh5_hardware::JointTorqueAndReboot>> joints_
Map group->list of joint handles.

realtime_tools::RealtimeBuffer<mh5_msgs::ActivateJoint::Request> torque_commands_buffer_
Holds torque activation commands to be processed during the update() processings. The service callbacks
only store “true” or “false” in this buffer depending on the command processed.

realtime_tools::RealtimeBuffer<mh5_msgs::ActivateJoint::Request> reboot_commands_buffer_
Holds reboot commands to be processed during the update() processings. The service callbacks only store
“true” or “false” in this buffer depending on the command processed.

ros::ServiceServer torque_srv_
ROS Service that responds to the “switch_torque” calls.

36 Chapter 5. mh5_controllers reference

MH5 Robot, Release D.1

ros::ServiceServer reboot_srv_
ROS Service that responds to the “reboot” calls.

5.2 class ExtendedJointTrajectoryController

class mh5_controllers::ExtendedJointTrajectoryController : public
controller_interface::MultiInterfaceController<hardware_interface::PosVelJointInterface,
mh5_hardware::ActiveJointInterface>

Public Functions

inline ExtendedJointTrajectoryController()

bool init(hardware_interface::RobotHW *robot_hw, ros::NodeHandle &root_nh, ros::NodeHandle
&controller_nh)

void starting(const ros::Time &time)

void stopping(const ros::Time &time)

void update(const ros::Time &time, const ros::Duration &period)

Private Members

mh5_controllers::BaseJointTrajectoryController *pos_controller_

mh5_controllers::ActiveJointController *act_controller_

5.3 class CommunicationStatsController

class mh5_controllers::CommunicationStatsController : public
controller_interface::Controller<mh5_hardware::CommunicationStatsInterface>

Publishes communication ststistics for all the Dynamixel loops registered in the hardware interface. Requires
mh5_hardware::CommunicationStatsInterface to access the statistics for all loops. If combined HW interface
is used please note that this will get all the loops, across all the physical HW interfaces that the combined HW
interface will start.

The messages are publish as diagnostic_msgs::DiagnosticArray under topic “diagnostics”. Aggregators can be
used to process thsese raw diagnostic messages and publish them to a RobotMonitor.

5.2. class ExtendedJointTrajectoryController 37

MH5 Robot, Release D.1

Public Functions

inline CommunicationStatsController()
Construct a new Communication Stats Controller object; defaults the publish period to 0.0.

bool init(mh5_hardware::CommunicationStatsInterface *hw, ros::NodeHandle &root_nh, ros::NodeHandle
&controller_nh)

Initializes the controller. Reads the parameter server “publish_period” [expressed in seconds] and uses it
for sheduling the publishing of the communication information. It defaults to 30s if no value is avaialable.
Please note that the publishing period is also used to reset the short time communication statistics that are
provided by the mh5_hardware::CommunicationStatsInterface.

It will setup the realtime publisher and allocate the message structure to accomodate the data from the
CommunicationStatsInterface.

Parameters

• hw – the hardware providing the loops; could be a Combined HW Interface

• root_nh – the top Node Handler

• controller_nh – the node handler of the controller; used to access the parameter server

Returns true if controller was initialized sucessfully

void starting(const ros::Time &time)
Resets the last_publish_time_ to the provided time.

Parameters time – when the controller was started

void update(const ros::Time&, const ros::Duration&)
Performs the actual publishing of statistics by accesing the inteface data. It will check the last time the
message was published and does not do any publish if it is less than publish_period_ desired for these
message publishing.

Please note that after the massage is published it invokes the setReset(true) for the CommunicationStatsIn-
terface to reset to 0 the short-term statistics.

virtual void stopping(const ros::Time&)
Provided for completion of the controller interface.

Private Members

std::vector<mh5_hardware::CommunicationStatsHandle> communication_states_
Holds the list of handles to all the loops across all the HW interfaces.

std::shared_ptr<realtime_tools::RealtimePublisher<diagnostic_msgs::DiagnosticArray>> realtime_pub_
Publisher object.

ros::Time last_publish_time_
Keeps the last publish time. Updated every time we publish a new message.

double publish_period_
The desired publishing period in seconds for the diagnostoc messages.

38 Chapter 5. mh5_controllers reference

CHAPTER

SIX

MH5_UI REFERENCE

6.1 Main classes

6.1.1 class MainUI

class main_ui.MainUI
Main UI class that handles the views and switches between them.

The MainUI setups a SnackScreen, determines the size of the available screen and handles the main display loop
that processes the hotkeys. An additional hot-key ‘q’ is provided to quit the loop and close the display.

__init__()→ None
Initializes the UI. Allocates the SnackScreen, determines the width and height of the screen and initializes
the views.

screen: snack.SnackScreen
The main screen of the UI. It is a SnackScreen.

w: int
The width of the screen.

h: int
The height of the screen.

views: Dict[str, snack.Widget]
The views in the UI. You can use add_view() to add them to this dictionary.

current_view: snack.Widget
The current view being shown.

done: bool
Controls the display loop. Will be initialized to False and will only be set to True by pressing the q hot-key.

add_view(view: snack.Widget, hot_key: str, default_view: bool = False)→ None
Adds a view (page) to the dictionay of views. Views are held by their hotkey.

Parameters

• view (Widget or subclass) – The view (page) to be added. The view must be fully
constructed and view_ui.View.run() must be possible to be executed on that object.

• hot_key (str) – The key associated with the view. The main loop will process keys and
if they match one of these it will handle the switch to that particular view.

• default_view (bool, optional) – Marks this view as the default view which means
the MainUI will use this to start displaying the interface when executing run() for the
first time. When you add views to the MainUI the last one that uses the default_view

39

MH5 Robot, Release D.1

will overwrite the other ones and that will be the one to be used. If no view is defined as
default_view the MainUI will use the first item in the list of hot-keys. Because of the
way the dictionaries work in Python this might not be the first view added. By default False

change_view(hotkey: str)→ None
Changes a view to the one specified by the hot-key provided.

The method will ask the present view to view_ui.View.finish() then will popWindow() from the screen.
It will assign the view represented in the dictionary by the hotkey to the current_view, it will ask to
view_ui.View.setup(), and will setup the hot-keys from that view.

Parameters hotkey (str) – The hot-key identifying that view.

run()→ None
Runs the main loop of the UI. It will activate the default_view and then will execute a view_ui.View.
run() for that view (which for shack means to wait for a key press) then handle the hotkeys by switching
the views if they match the ones associated with the views or finish the loop if ‘q’ was pressed.

6.2 Supporting classes

6.2.1 class View

class view_ui.View(screen: snack.SnackScreen, timer: int, title: str)
Base class for a view.

grid: snack.GridForm
The view places all the elements into a snack.GridForm object of size 1 x 1. We use a GridForm because
this is handling hotkeys and allows to define an automated timer to trigger the refresh of the content.

content: snack.Widget
Is the actual content of the view that is normally produced by invoking create_content().

__init__(screen: snack.SnackScreen, timer: int, title: str)→ None
Initializes a new view.

A view uses a snack.GridForm as a canvas, that is pinned on the screen provided and displays a title.

The constructor only stores the screen, timer and title in the internal variables. You need to specifically
call setup() to construct the view. setup() will call create_content() that normally needs to be
overridden by subclasses to present a specific content.

Parameters

• screen (snack.SnackScreen) – The screen where the view will be positioned.

• timer (int) – Refresh time for view in milliseconds. This will trigger the
update_content().

• title (str) – Title to be presented on the top of the view.

screen: snack.SnackScreen
The main screen where the view will be posted.

timer: int
The refresh timer (in milliseconds) that the view will use to update the content displayed.

title: str
The title of the view. It is diplayed at the top of the screen.

40 Chapter 6. mh5_ui reference

MH5 Robot, Release D.1

setup()→ None
Builds the view content.

Must be called by the MainUi before starting the view. This creates all the objects of the UI and initializes
them. Sets-up a GridForm of size 1x1 and calls create_content() to fill the specific content of the view.
It also registers the hot keys as are reported by the hotkeys property that must be subclassed if the view
needs to handle keys.

create_content()→ snack.Widget
Should be implemented in subclasses to produce the desired view output.

Returns A snack.Widget that will be included in the grid. Note that it should be one element
only and if you need a more complex structure you need to use a GridForm or other classes to
contain and structure the elements. Have a look at the implementation of RobotStatusView,
CommsStatusView and JointView.

Return type Widget

property hotkeys: List[str]
Returns the keys this view handles. If implemented by subclasses then also process_hotkey should be
implemented.

update_content()→ None
Handles updates to the content of the view. Normally these are triggered by the elapsed timer set up by the
timer property. Should be implemented in the subclass according to the desired behavior.

process_hotkey(key: str)→ None
Processes the declared hotkeys. Should be implemented in subclass.

Parameters key (str) – The key to be processed.

run()→ str
Performs a run() of the grid.

First calls the update_content() to trigger updates to the interface and refresh() on the screen object.
After that it runs the run() of the grid object followed by process_key() method to process the hotkey
pressed (if any) after which it returns the hot key to the caller program (typically the MainUI) so that the
loop there can process it’s own hot keys.

Returns The key pressed for the caller program to handle if necessary

Return type str

finish()→ None
Provides a way for the view to clear resources before being switched from. For instance views that are dis-
playing information from ROS topics have the chance to unsubscribe from the topics here to save resources.

6.2.2 class NameValueScale

class view_ui.NameValueScale(name: str, unit: str, grid: snack.GridForm, row: int, widths: List[int], min_val:
float, max_val: float)

A display element that includes a name for the object, a value (+ unit of measure if provided) and a Scale (a
horizontal bar graph).

__init__(name: str, unit: str, grid: snack.GridForm, row: int, widths: List[int], min_val: float, max_val:
float)

Creates a combined display element in one line with a name, a value and a horizontal bar graph.

Parameters

• name (str) – The name to be shown on the left side of the display.

6.2. Supporting classes 41

MH5 Robot, Release D.1

• unit (str) – A string to be shown after the value to denote the unit of measure.

• grid (GridForm) – The form where the elements are added to

• row (int) – The row number in the form where the elements will be positioned. All ele-
ments are on the same row.

• widths (List[int]) – A list of width for the elements (name, value, scale)

• min_val (float) – The minium value that the element will display. Needed to calibrate
the bar graph.

• max_val (float) – The maximum value that the element will display. Needed to calibrate
the bar graph.

unit: str
String for units of measure.

name: snack.Textbox
A snack.TextBox that will display the name part of the element.

value: snack.Textbox
A snack.TextBox that will display the value part of the element.

min_val: float
The minimum value expected for the element to display.

max_val: float
The maximum value expected for the element to display.

range_val: float
The range of the value expected to be displayed. Calculated as max-val - min_val.

scale: snack.Scale
The snack.Scale that will display the bar graph of the item.

update_value(value: float, format: str = '4.1f')→ None
Updates the content of the elements based on the provided value.

Parameters

• value (float) – The new value to be displayed. This will be reflected in the value field
as well as in the bar graph.

• format (str, optional) – The format to display the value in the value field, by default
‘4.1f’

6.2.3 class NameStatValue

class view_ui.NameStatValue(name: str, unit: str, grid: snack.GridForm, row: int, widths: List[int])
A display element that includes a name for the object, a status and an additional (optional can be ‘’) text.

__init__(name: str, unit: str, grid: snack.GridForm, row: int, widths: List[int])→ None
Creates a combined display element in one line with a name, a status (+unit of measure if provided) and a
value.

Parameters

• name (str) – The name to be shown on the left side of the display.

• unit (str) – [A string to be shown after the value to denote the unit of measure.

• grid (GridForm) – [description]

42 Chapter 6. mh5_ui reference

MH5 Robot, Release D.1

• row (int) – The row number in the form where the elements will be positioned. All ele-
ments are on the same row.

• widths (List[int]) – A list of width for the elements (name, status, value)

unit: str
String for units of measure.

name: snack.Textbox
A snack.TextBox that will display the name part of the element.

stat: snack.Textbox
A snack.TextBox that will display the status part of the element.

value: snack.Textbox
A snack.TextBox that will display the value part of the element.

update_value(stat: str, value: str = '')→ None
Updates the content of the elements based on the provided value.

Parameters

• stat (str) – A string showing the status of the element.

• value (str, optional) – An additional value to be shown after the status, by default ‘’.

6.3 Views

6.3.1 class RobotStatusView

class status_view.RobotStatusView(screen: snack.SnackScreen, timer: int, title: str = 'Robot Status')
View that presents the overview of robot’s hardware (excluding servos).

This version includes the following information: - battery voltage - voltage for 5V railing - voltage for 3.3V
railing - battery statistics (on battery for. . . , battery remaining. . .); these are claculated

in the code here and are based on monitoring the discharge of the battery and the last time the battery
was changed

• processor temperature

• fan status (on, off)

• CPU frequency

• CPU governor

• CPU load (1 minute, 5 minutes, 15 minutes average)

• memory used (in %)

• WiFi AP status (IP address if on)

• WiFi dongle status (IP address is connected to infrastructure)

• LAN status (IP address is connected to infrastructure)

__init__(screen: snack.SnackScreen, timer: int, title: str = 'Robot Status')
Constructor for the status view.

Initializes the battery statistics.

6.3. Views 43

MH5 Robot, Release D.1

Parameters

• screen (snack.SnackScreen) – The screen where the display will be made.

• timer (int) – [description]

• title (str, optional) – Title to be printed for the view, by default ‘Robot Status’

batt_last_change: float
Keeps the time that the battery was changed last.

batt_last_change_value: float
The last value for the battery voltage when battery was replaced.

batt_last_value: float
Last read battery voltage.

batt_last_estimate: float
Time when the latest estimate about battery life was done.

on_batt_str: str
mm time on battery from last change (or start).

Type String showing hh

rem_batt_str: str
mm time remaining on battery based on last estimate.

Type String showing hh

create_content()→ snack.Grid
Creates a snack.Grid that contains the items to be displayed and initializes the values for these elements.

Returns The initialized Grid to be used by MainUI.

Return type snack.Grid

shell_cmd(command: str)→ str
Convenience function for running a Shell command an returning the result.

Parameters command (str) – Command to be execcuted (ex. ifconfig wlan0 | grep
"inet ").

Returns The result of running the command or empty string is errors occurred.

Return type str

read_sysfs(file: str)→ str
Reads the content of a sysfs parameter and returns the value stripped.

The method is provided as a faster alternative to using the shell_cmd`() because no shell will need to be
spun.

Parameters file (str) – The sysfs access (ex. /sys/class/thermal/thermal_zone0/
temp). Please note that the function does not handle any exceptions, so if the file does not
exist or the user does not have authorization to read the value an exception will be raised and
needs to be handled by the calling program.

Returns The result of reading that sysfs parameter.

Return type str

get_interf_status(interf: str)→ Tuple[str, str]
Convenience function for getting the status and the IP address of an interface.

Parameters interf (str) – The name of the interface (ex. wlan0)

44 Chapter 6. mh5_ui reference

MH5 Robot, Release D.1

Returns Returns the status of the interface in the first string as “On” or “Off” and the IP address
in the second string if connected or empty string if not connected.

Return type tuple(str, str)

update_content()→ None
Reads the information for each of the elements in the screen and updates their content.

This is triggered by the timer that is setup by the view_ui.View class.

6.3.2 class JointView

6.3. Views 45

MH5 Robot, Release D.1

46 Chapter 6. mh5_ui reference

INDEX

Symbols
__init__() (main_ui.MainUI method), 39
__init__() (status_view.RobotStatusView method), 43
__init__() (view_ui.NameStatValue method), 42
__init__() (view_ui.NameValueScale method), 41
__init__() (view_ui.View method), 40

A
add_view() (main_ui.MainUI method), 39

B
batt_last_change (status_view.RobotStatusView at-

tribute), 44
batt_last_change_value (sta-

tus_view.RobotStatusView attribute), 44
batt_last_estimate (status_view.RobotStatusView at-

tribute), 44
batt_last_value (status_view.RobotStatusView at-

tribute), 44

C
change_view() (main_ui.MainUI method), 40
content (view_ui.View attribute), 40
create_content() (status_view.RobotStatusView

method), 44
create_content() (view_ui.View method), 41
current_view (main_ui.MainUI attribute), 39

D
done (main_ui.MainUI attribute), 39

F
finish() (view_ui.View method), 41

G
get_interf_status() (status_view.RobotStatusView

method), 44
grid (view_ui.View attribute), 40

H
h (main_ui.MainUI attribute), 39

hotkeys (view_ui.View property), 41

L
LSM6DS3 (C++ class), 25
LSM6DS3::~LSM6DS3 (C++ function), 25
LSM6DS3::allOnesCounter (C++ member), 26
LSM6DS3::calcAccel (C++ function), 26
LSM6DS3::calcGyro (C++ function), 26
LSM6DS3::fifoBegin (C++ function), 25
LSM6DS3::fifoClear (C++ function), 26
LSM6DS3::fifoEnd (C++ function), 26
LSM6DS3::fifoGetStatus (C++ function), 26
LSM6DS3::fifoRead (C++ function), 26
LSM6DS3::initialize (C++ function), 25
LSM6DS3::LSM6DS3 (C++ function), 25
LSM6DS3::nonSuccessCounter (C++ member), 26
LSM6DS3::readFloatAccelX (C++ function), 25
LSM6DS3::readFloatAccelY (C++ function), 25
LSM6DS3::readFloatAccelZ (C++ function), 25
LSM6DS3::readFloatGyroX (C++ function), 25
LSM6DS3::readFloatGyroY (C++ function), 25
LSM6DS3::readFloatGyroZ (C++ function), 25
LSM6DS3::readRawAccelX (C++ function), 25
LSM6DS3::readRawAccelY (C++ function), 25
LSM6DS3::readRawAccelZ (C++ function), 25
LSM6DS3::readRawGyroX (C++ function), 25
LSM6DS3::readRawGyroY (C++ function), 25
LSM6DS3::readRawGyroZ (C++ function), 25
LSM6DS3::readRawTemp (C++ function), 25
LSM6DS3::readTempC (C++ function), 25
LSM6DS3::readTempF (C++ function), 25
LSM6DS3::settings (C++ member), 26

M
MainUI (class in main_ui), 39
max_val (view_ui.NameValueScale attribute), 42
mh5_controllers::ActiveJointController (C++

class), 35
mh5_controllers::ActiveJointController::~ActiveJointController

(C++ function), 35
mh5_controllers::ActiveJointController::ActiveJointController

(C++ function), 35

47

MH5 Robot, Release D.1

mh5_controllers::ActiveJointController::init
(C++ function), 35

mh5_controllers::ActiveJointController::joints_
(C++ member), 36

mh5_controllers::ActiveJointController::reboot_commands_buffer_
(C++ member), 36

mh5_controllers::ActiveJointController::reboot_srv_
(C++ member), 36

mh5_controllers::ActiveJointController::rebootCB
(C++ function), 36

mh5_controllers::ActiveJointController::starting
(C++ function), 36

mh5_controllers::ActiveJointController::torque_commands_buffer_
(C++ member), 36

mh5_controllers::ActiveJointController::torque_srv_
(C++ member), 36

mh5_controllers::ActiveJointController::torqueCB
(C++ function), 36

mh5_controllers::ActiveJointController::update
(C++ function), 36

mh5_controllers::CommunicationStatsController
(C++ class), 37

mh5_controllers::CommunicationStatsController::communication_states_
(C++ member), 38

mh5_controllers::CommunicationStatsController::CommunicationStatsController
(C++ function), 38

mh5_controllers::CommunicationStatsController::init
(C++ function), 38

mh5_controllers::CommunicationStatsController::last_publish_time_
(C++ member), 38

mh5_controllers::CommunicationStatsController::publish_period_
(C++ member), 38

mh5_controllers::CommunicationStatsController::realtime_pub_
(C++ member), 38

mh5_controllers::CommunicationStatsController::starting
(C++ function), 38

mh5_controllers::CommunicationStatsController::stopping
(C++ function), 38

mh5_controllers::CommunicationStatsController::update
(C++ function), 38

mh5_controllers::ExtendedJointTrajectoryController
(C++ class), 37

mh5_controllers::ExtendedJointTrajectoryController::act_controller_
(C++ member), 37

mh5_controllers::ExtendedJointTrajectoryController::ExtendedJointTrajectoryController
(C++ function), 37

mh5_controllers::ExtendedJointTrajectoryController::init
(C++ function), 37

mh5_controllers::ExtendedJointTrajectoryController::pos_controller_
(C++ member), 37

mh5_controllers::ExtendedJointTrajectoryController::starting
(C++ function), 37

mh5_controllers::ExtendedJointTrajectoryController::stopping
(C++ function), 37

mh5_controllers::ExtendedJointTrajectoryController::update
(C++ function), 37

mh5_hardware::ActiveJointInterface (C++
class), 33

mh5_hardware::CommunicationStatsHandle (C++
class), 33

mh5_hardware::CommunicationStatsHandle::CommunicationStatsHandle
(C++ function), 33

mh5_hardware::CommunicationStatsHandle::errors_
(C++ member), 34

mh5_hardware::CommunicationStatsHandle::getErrors
(C++ function), 33

mh5_hardware::CommunicationStatsHandle::getErrorsPtr
(C++ function), 34

mh5_hardware::CommunicationStatsHandle::getName
(C++ function), 33

mh5_hardware::CommunicationStatsHandle::getPackets
(C++ function), 33

mh5_hardware::CommunicationStatsHandle::getPacketsPtr
(C++ function), 34

mh5_hardware::CommunicationStatsHandle::getTotErrors
(C++ function), 33

mh5_hardware::CommunicationStatsHandle::getTotErrorsPtr
(C++ function), 34

mh5_hardware::CommunicationStatsHandle::getTotPackets
(C++ function), 33

mh5_hardware::CommunicationStatsHandle::getTotPacketsPtr
(C++ function), 34

mh5_hardware::CommunicationStatsHandle::name_
(C++ member), 34

mh5_hardware::CommunicationStatsHandle::packets_
(C++ member), 34

mh5_hardware::CommunicationStatsHandle::reset_
(C++ member), 34

mh5_hardware::CommunicationStatsHandle::setReset
(C++ function), 34

mh5_hardware::CommunicationStatsHandle::tot_errors_
(C++ member), 34

mh5_hardware::CommunicationStatsHandle::tot_packets_
(C++ member), 34

mh5_hardware::CommunicationStatsInterface
(C++ class), 34

mh5_hardware::DynamixelDevice (C++ class), 16
mh5_hardware::DynamixelDevice::DynamixelDevice

(C++ function), 16
mh5_hardware::DynamixelDevice::fromParam

(C++ function), 16
mh5_hardware::DynamixelDevice::id (C++ func-

tion), 16
mh5_hardware::DynamixelDevice::id_ (C++ mem-

ber), 18
mh5_hardware::DynamixelDevice::initRegisters

(C++ function), 17
mh5_hardware::DynamixelDevice::name (C++

48 Index

MH5 Robot, Release D.1

function), 17
mh5_hardware::DynamixelDevice::name_ (C++

member), 18
mh5_hardware::DynamixelDevice::nh_ (C++ mem-

ber), 18
mh5_hardware::DynamixelDevice::nss_ (C++

member), 18
mh5_hardware::DynamixelDevice::ph_ (C++ mem-

ber), 18
mh5_hardware::DynamixelDevice::ping (C++

function), 17
mh5_hardware::DynamixelDevice::port_ (C++

member), 18
mh5_hardware::DynamixelDevice::present (C++

function), 17
mh5_hardware::DynamixelDevice::present_

(C++ member), 18
mh5_hardware::DynamixelDevice::readRegister

(C++ function), 17
mh5_hardware::DynamixelDevice::reboot (C++

function), 18
mh5_hardware::DynamixelDevice::reboot_command_flag_

(C++ member), 18
mh5_hardware::DynamixelDevice::resetRebootCommandFlag

(C++ function), 18
mh5_hardware::DynamixelDevice::setPresent

(C++ function), 17
mh5_hardware::DynamixelDevice::shouldReboot

(C++ function), 18
mh5_hardware::DynamixelDevice::writeRegister

(C++ function), 17
mh5_hardware::FootSensor (C++ class), 23
mh5_hardware::FootSensor::calibration_factors_

(C++ member), 24
mh5_hardware::FootSensor::current_ (C++ mem-

ber), 24
mh5_hardware::FootSensor::foot_readings_

(C++ member), 24
mh5_hardware::FootSensor::FootSensor (C++

function), 23
mh5_hardware::FootSensor::fromParam (C++

function), 23
mh5_hardware::FootSensor::getVoltCurrHandle

(C++ function), 24
mh5_hardware::FootSensor::initRegisters

(C++ function), 23
mh5_hardware::FootSensor::lpf_readings_

(C++ member), 24
mh5_hardware::FootSensor::raw_readings_

(C++ member), 24
mh5_hardware::FootSensor::read4Sensors (C++

function), 24
mh5_hardware::FootSensor::readCalibratedSensors

(C++ function), 24

mh5_hardware::FootSensor::readCalibrationFactors
(C++ function), 24

mh5_hardware::FootSensor::readLPFSensors
(C++ function), 24

mh5_hardware::FootSensor::readPower (C++
function), 24

mh5_hardware::FootSensor::readRawSensors
(C++ function), 24

mh5_hardware::FootSensor::updateCalibrationFactors
(C++ function), 24

mh5_hardware::FootSensor::volt_curr_handle_
(C++ member), 24

mh5_hardware::FootSensor::voltage_ (C++ mem-
ber), 24

mh5_hardware::GroupSyncRead (C++ class), 29
mh5_hardware::GroupSyncRead::beforeCommunication

(C++ function), 29
mh5_hardware::GroupSyncRead::Communicate

(C++ function), 29
mh5_hardware::GroupSyncRead::GroupSyncRead

(C++ function), 29
mh5_hardware::GroupSyncRead::prepare (C++

function), 29
mh5_hardware::GroupSyncWrite (C++ class), 30
mh5_hardware::GroupSyncWrite::afterCommunication

(C++ function), 30
mh5_hardware::GroupSyncWrite::Communicate

(C++ function), 30
mh5_hardware::GroupSyncWrite::GroupSyncWrite

(C++ function), 30
mh5_hardware::GroupSyncWrite::prepare (C++

function), 30
mh5_hardware::Joint (C++ class), 19
mh5_hardware::Joint::active_command_ (C++

member), 22
mh5_hardware::Joint::active_command_flag_

(C++ member), 22
mh5_hardware::Joint::active_state_ (C++ mem-

ber), 22
mh5_hardware::Joint::effort_state_ (C++ mem-

ber), 22
mh5_hardware::Joint::fromParam (C++ function),

19
mh5_hardware::Joint::getJointActiveHandle

(C++ function), 22
mh5_hardware::Joint::getJointPosVelHandle

(C++ function), 22
mh5_hardware::Joint::getJointStateHandle

(C++ function), 21
mh5_hardware::Joint::getRawPositionFromCommand

(C++ function), 21
mh5_hardware::Joint::getRawTorqueActiveFromCommand

(C++ function), 20
mh5_hardware::Joint::getTempVoltHandle (C++

Index 49

MH5 Robot, Release D.1

function), 22
mh5_hardware::Joint::getVelocityProfileFromCommand

(C++ function), 21
mh5_hardware::Joint::initRegisters (C++ func-

tion), 19
mh5_hardware::Joint::inverse_ (C++ member), 22
mh5_hardware::Joint::isActive (C++ function), 20
mh5_hardware::Joint::Joint (C++ function), 19
mh5_hardware::Joint::jointActiveHandle_

(C++ member), 23
mh5_hardware::Joint::jointPosVelHandle_

(C++ member), 23
mh5_hardware::Joint::jointStateHandle_ (C++

member), 23
mh5_hardware::Joint::jointTempVoltHandle_

(C++ member), 23
mh5_hardware::Joint::offset_ (C++ member), 22
mh5_hardware::Joint::poistion_command_flag_

(C++ member), 22
mh5_hardware::Joint::position_command_ (C++

member), 22
mh5_hardware::Joint::position_state_ (C++

member), 22
mh5_hardware::Joint::resetActiveCommandFlag

(C++ function), 20
mh5_hardware::Joint::setEffortFromRaw (C++

function), 21
mh5_hardware::Joint::setPositionFromRaw

(C++ function), 20
mh5_hardware::Joint::setTemperatureFromRaw

(C++ function), 21
mh5_hardware::Joint::setVelocityFromRaw

(C++ function), 21
mh5_hardware::Joint::setVoltageFromRaw (C++

function), 21
mh5_hardware::Joint::shouldToggleTorque

(C++ function), 20
mh5_hardware::Joint::temperature_state_

(C++ member), 22
mh5_hardware::Joint::toggleTorque (C++ func-

tion), 20
mh5_hardware::Joint::torqueOff (C++ function),

20
mh5_hardware::Joint::torqueOn (C++ function), 20
mh5_hardware::Joint::velocity_command_ (C++

member), 22
mh5_hardware::Joint::velocity_state_ (C++

member), 22
mh5_hardware::Joint::voltage_state_ (C++

member), 22
mh5_hardware::JointHandleWithFlag (C++ class),

32
mh5_hardware::JointHandleWithFlag::cmd_flag_

(C++ member), 32

mh5_hardware::JointHandleWithFlag::JointHandleWithFlag
(C++ function), 32

mh5_hardware::JointHandleWithFlag::setCommand
(C++ function), 32

mh5_hardware::JointTorqueAndReboot (C++
class), 32

mh5_hardware::JointTorqueAndReboot::getReboot
(C++ function), 33

mh5_hardware::JointTorqueAndReboot::JointTorqueAndReboot
(C++ function), 33

mh5_hardware::JointTorqueAndReboot::reboot_flag_
(C++ member), 33

mh5_hardware::JointTorqueAndReboot::setReboot
(C++ function), 33

mh5_hardware::LoopWithCommunicationStats
(C++ class), 26

mh5_hardware::LoopWithCommunicationStats::~LoopWithCommunicationStats
(C++ function), 27

mh5_hardware::LoopWithCommunicationStats::afterCommunication
(C++ function), 28

mh5_hardware::LoopWithCommunicationStats::beforeCommunication
(C++ function), 27

mh5_hardware::LoopWithCommunicationStats::comm_stats_handle_
(C++ member), 28

mh5_hardware::LoopWithCommunicationStats::Communicate
(C++ function), 28

mh5_hardware::LoopWithCommunicationStats::errors_
(C++ member), 28

mh5_hardware::LoopWithCommunicationStats::Execute
(C++ function), 27

mh5_hardware::LoopWithCommunicationStats::getCommStatHandle
(C++ function), 27

mh5_hardware::LoopWithCommunicationStats::getName
(C++ function), 27

mh5_hardware::LoopWithCommunicationStats::incErrors
(C++ function), 28

mh5_hardware::LoopWithCommunicationStats::incPackets
(C++ function), 28

mh5_hardware::LoopWithCommunicationStats::last_execution_time_
(C++ member), 28

mh5_hardware::LoopWithCommunicationStats::loop_rate_
(C++ member), 28

mh5_hardware::LoopWithCommunicationStats::LoopWithCommunicationStats
(C++ function), 26

mh5_hardware::LoopWithCommunicationStats::packets_
(C++ member), 28

mh5_hardware::LoopWithCommunicationStats::prepare
(C++ function), 27

mh5_hardware::LoopWithCommunicationStats::reset_
(C++ member), 28

mh5_hardware::LoopWithCommunicationStats::resetAllStats
(C++ function), 27

mh5_hardware::LoopWithCommunicationStats::resetStats
(C++ function), 27

50 Index

MH5 Robot, Release D.1

mh5_hardware::LoopWithCommunicationStats::tot_errors_
(C++ member), 28

mh5_hardware::LoopWithCommunicationStats::tot_packets_
(C++ member), 28

mh5_hardware::MH5DynamixelInterface (C++
class), 11

mh5_hardware::MH5DynamixelInterface::~MH5DynamixelInterface
(C++ function), 11

mh5_hardware::MH5DynamixelInterface::active_joint_interface
(C++ member), 14

mh5_hardware::MH5DynamixelInterface::baudrate_
(C++ member), 13

mh5_hardware::MH5DynamixelInterface::communication_stats_interface
(C++ member), 14

mh5_hardware::MH5DynamixelInterface::foot_sensors_
(C++ member), 14

mh5_hardware::MH5DynamixelInterface::init
(C++ function), 11

mh5_hardware::MH5DynamixelInterface::initJoints
(C++ function), 12

mh5_hardware::MH5DynamixelInterface::initPort
(C++ function), 12

mh5_hardware::MH5DynamixelInterface::initSensors
(C++ function), 12

mh5_hardware::MH5DynamixelInterface::joint_state_interface
(C++ member), 13

mh5_hardware::MH5DynamixelInterface::joint_temp_volt_interface
(C++ member), 14

mh5_hardware::MH5DynamixelInterface::joints_
(C++ member), 14

mh5_hardware::MH5DynamixelInterface::MH5DynamixelInterface
(C++ function), 11

mh5_hardware::MH5DynamixelInterface::nh_
(C++ member), 13

mh5_hardware::MH5DynamixelInterface::nss_
(C++ member), 13

mh5_hardware::MH5DynamixelInterface::num_joints_
(C++ member), 14

mh5_hardware::MH5DynamixelInterface::num_sensors_
(C++ member), 14

mh5_hardware::MH5DynamixelInterface::packetHandler_
(C++ member), 13

mh5_hardware::MH5DynamixelInterface::port_
(C++ member), 13

mh5_hardware::MH5DynamixelInterface::portHandler_
(C++ member), 13

mh5_hardware::MH5DynamixelInterface::pos_vel_joint_interface
(C++ member), 14

mh5_hardware::MH5DynamixelInterface::protocol_
(C++ member), 13

mh5_hardware::MH5DynamixelInterface::pvlReader_
(C++ member), 13

mh5_hardware::MH5DynamixelInterface::pvWriter_
(C++ member), 13

mh5_hardware::MH5DynamixelInterface::read
(C++ function), 12

mh5_hardware::MH5DynamixelInterface::rs485_
(C++ member), 13

mh5_hardware::MH5DynamixelInterface::sensor_volt_curr_interface
(C++ member), 14

mh5_hardware::MH5DynamixelInterface::setupDynamixelLoops
(C++ function), 13

mh5_hardware::MH5DynamixelInterface::setupLoop
(C++ function), 12

mh5_hardware::MH5DynamixelInterface::tvReader_
(C++ member), 13

mh5_hardware::MH5DynamixelInterface::tWriter_
(C++ member), 13

mh5_hardware::MH5DynamixelInterface::write
(C++ function), 12

mh5_hardware::MH5I2CInterface (C++ class), 14
mh5_hardware::MH5I2CInterface::~MH5I2CInterface

(C++ function), 14
mh5_hardware::MH5I2CInterface::ang_vel_

(C++ member), 15
mh5_hardware::MH5I2CInterface::calcLPF (C++

function), 15
mh5_hardware::MH5I2CInterface::imu_ (C++

member), 15
mh5_hardware::MH5I2CInterface::imu_h_ (C++

member), 16
mh5_hardware::MH5I2CInterface::imu_last_execution_time_

(C++ member), 15
mh5_hardware::MH5I2CInterface::imu_loop_rate_

(C++ member), 15
mh5_hardware::MH5I2CInterface::imu_lpf_

(C++ member), 15
mh5_hardware::MH5I2CInterface::imu_orientation_

(C++ member), 15
mh5_hardware::MH5I2CInterface::imu_sensor_interface_

(C++ member), 16
mh5_hardware::MH5I2CInterface::init (C++

function), 14
mh5_hardware::MH5I2CInterface::lin_acc_

(C++ member), 15
mh5_hardware::MH5I2CInterface::MH5I2CInterface

(C++ function), 14
mh5_hardware::MH5I2CInterface::nh_ (C++ mem-

ber), 15
mh5_hardware::MH5I2CInterface::nss_ (C++

member), 15
mh5_hardware::MH5I2CInterface::port_ (C++

member), 15
mh5_hardware::MH5I2CInterface::port_name_

(C++ member), 15
mh5_hardware::MH5I2CInterface::read (C++

function), 15
mh5_hardware::MH5I2CInterface::write (C++

Index 51

MH5 Robot, Release D.1

function), 15
mh5_hardware::PVLReader (C++ class), 30
mh5_hardware::PVLReader::afterCommunication

(C++ function), 31
mh5_hardware::PVLReader::PVLReader (C++ func-

tion), 31
mh5_hardware::PVWriter (C++ class), 31
mh5_hardware::PVWriter::beforeCommunication

(C++ function), 31
mh5_hardware::PVWriter::PVWriter (C++ func-

tion), 31
mh5_port_handler::PortHandlerMH5 (C++ class),

16
mh5_port_handler::PortHandlerMH5::PortHandlerMH5

(C++ function), 16
mh5_port_handler::PortHandlerMH5::setRS485

(C++ function), 16
min_val (view_ui.NameValueScale attribute), 42

N
name (view_ui.NameStatValue attribute), 43
name (view_ui.NameValueScale attribute), 42
NameStatValue (class in view_ui), 42
NameValueScale (class in view_ui), 41

O
on_batt_str (status_view.RobotStatusView attribute),

44

P
process_hotkey() (view_ui.View method), 41

R
range_val (view_ui.NameValueScale attribute), 42
read_sysfs() (status_view.RobotStatusView method),

44
rem_batt_str (status_view.RobotStatusView attribute),

44
RobotStatusView (class in status_view), 43
run() (main_ui.MainUI method), 40
run() (view_ui.View method), 41

S
scale (view_ui.NameValueScale attribute), 42
screen (main_ui.MainUI attribute), 39
screen (view_ui.View attribute), 40
setup() (view_ui.View method), 40
shell_cmd() (status_view.RobotStatusView method), 44
stat (view_ui.NameStatValue attribute), 43

T
timer (view_ui.View attribute), 40
title (view_ui.View attribute), 40

U
unit (view_ui.NameStatValue attribute), 43
unit (view_ui.NameValueScale attribute), 42
update_content() (status_view.RobotStatusView

method), 45
update_content() (view_ui.View method), 41
update_value() (view_ui.NameStatValue method), 43
update_value() (view_ui.NameValueScale method), 42

V
value (view_ui.NameStatValue attribute), 43
value (view_ui.NameValueScale attribute), 42
View (class in view_ui), 40
views (main_ui.MainUI attribute), 39

W
w (main_ui.MainUI attribute), 39

52 Index

	Design Principles
	Specifications
	Dimensions
	Actuators
	Power
	Electronics
	Software
	Future plans

	mh5_hardware package
	mh5_hardware reference
	Main classes
	class MH5DynamixelInterface
	class MH5I2CInterface

	Supporting classes
	class MH5PortHandler
	class DynamixelDevice
	class Joint
	class FootSensor
	class LSM6DS3

	Syncronization Loops
	class LoopWithCommunicationStats
	class GroupSyncRead
	class GroupSyncWrite
	class PVLReader
	class PVWriter

	ros_control Hardware Interface
	class JointHandleWithFlag
	class ActiveJointInterface
	class CommunicationStatsHandle
	class CommunicationStatsInterface

	mh5_controllers reference
	class ActiveJointController
	class ExtendedJointTrajectoryController
	class CommunicationStatsController

	mh5_ui reference
	Main classes
	class MainUI

	Supporting classes
	class View
	class NameValueScale
	class NameStatValue

	Views
	class RobotStatusView
	class JointView

	Index

